

Micro-Trigeneration:

Strom und Kälte aus (Ab)Wärme geringer Qualität

H. Edtmayer, E. Lang, M. Schloffer

4ward Energy Research GmbH, Graz, Österreich

www.4wardenergy.at

Einleitung

 Aktuelle Technologien zur Nutzung von (Ab)Wärme im kleinen Leistungsbereich nur bedingt wirtschaftlich

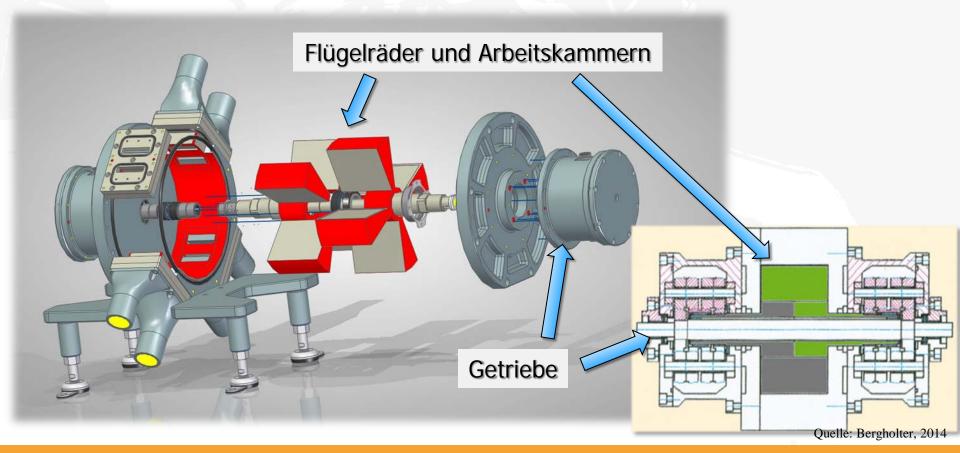
→ Forschungsprojekt: Mikro-Kraft-Wärme-Kälte-Kopplung auf Basis

der Schukey Technologie

 Wärmekraftmaschine im Dampfkreislauf (Rankine-Cycle)

- → Stromerzeuger
- Kälteerzeuger bei Umkehr der Prozessrichtung

Quelle: Bergholter, 2014



Die Schukey Technologie

Delta-Omega Maschine:

Rotierende Flügelräder mit wechselnder Winkelgeschwindigkeit

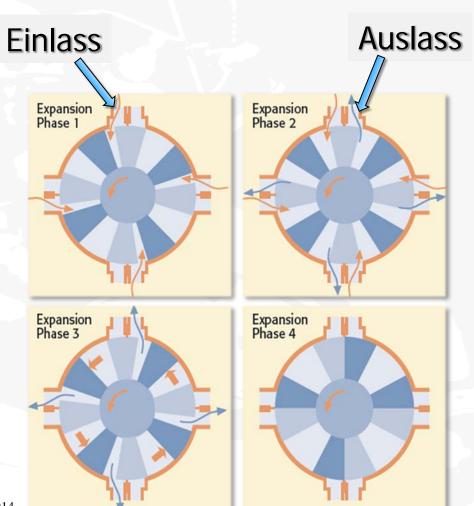
Die Schukey Technologie

Prozess mit 4 Phasen:

1. Phase:

Ansaugen Frischdampf

2. Phase:


Ende Ansaugen Frischdampf Beginn Auslass Brauchdampf

3. Phase:

Expansion Frischdampf
Ende Auslass Brauchdampf

4. Phase:

Vollständige Expansion Frischdampf

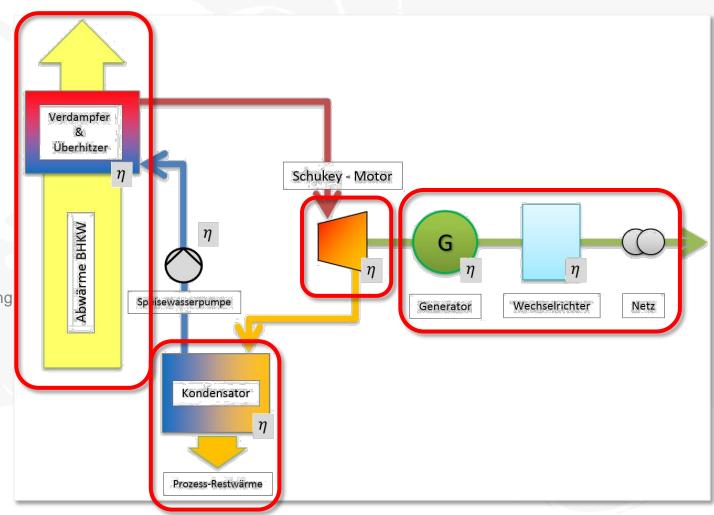
Quelle: Bergholter, 2014

Schukey System zur Abwärmenutzung

Verdampfer + Überhitzer

im Abgasstrom des BHKW

Schukey Motor


Wärmekraftmaschine im Dampfkreislauf

Stromerzeugung

mittels Generator, Netzeinspeisung über den Wechselrichter

Kondensator

Prozessabwärme kann als Nutzwärme verwendet werden

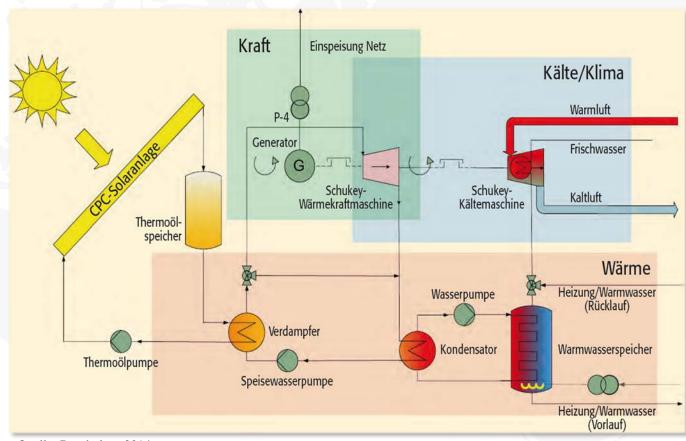
Schukey Motor als Micro-KWKK

Wärme-, Kälte- und Stromgewinnung in Gebäuden

Solare Energiegewinnung
CPC, CPC + Parabolrinne

Kraft & Strom

Wärmekraftmaschine + Generator


Kraft & Kälte

Wärmekraftmaschine

+ Kältemaschine

Wärme

Nutzwärme aus Prozessabwärme

Quelle: Bergholter, 2014

Einsatzszenarien Schukey System

> BHKW:

Abwärmenutzung aus Kolbenmaschinen oder Gasturbinen, wobei die Effizienz von Gasturbinen um ein Wesentliches gesteigert werden kann.

> Mobile Anwendungen:

Abgaswärmeverstromung in Schiffen, Diesellokomotiven oder LKWs. Nutzung der elektrischen Energie für Zusatzantrieb, Bordnetzt oder Kühlcontainer möglich, Kühlung in Fahrzeugen wie Zuggarnituren oder PKW.

Solare Kraft-Wärme-Kopplung:

Mit Solaranlagen in Ein- und Mehrfamilienhäusern, mit Überschusswärme aus Heizwerken mit Solarunterstützung.

> Solare Kühlung:

Solarthermie zum mechanischen Schukey Betrieb einer Schukey Kühlung, Photovoltaik zum elektrischen Betrieb einer Schukey Kühlung. Luft als Kühlmedium

Schukey System im BHKW

Auflistung der Wirkungsgradkette

- Gas-Kolbenmotor im BHKW
- Rankine-Cycle Dampfprozess
- Schukey Motor als
 Stromerzeuger zur
 Abwärmeverstromung

949	Kraftstoffleistung BHKW Kolbenmotor [kW]		
0.44	Mechanischer Wirkungsgrad Motor [-]		
420	Mechanische Motorleistung [kW]		
21	Anteil in der Abgasenergie [%]		
0.9	Wirkungsgrad Verdampfereinheit [-]		
183.6	Dampfleistung [kW]		
300	Dampftemperatur [°C]		
0.142	Schukey Motor Wirkungsgrad einstufig [-]		
26.0	Mechanische Leistung Schukey Motor [kW]		
0.885	Wirkungsgrad Generator & Wechselrichter [-]		
22.0	Elektrische Leistung Schukey System [kW]		
42,1	Elektrischer Wirkungsgrad BHKW [%]		
400	Elektrische Leistung BHKW [kW]		
5.5	Leistungssteigerung BHKW		
	durch das Schukey System [%]		
2.3	Wirkungsgradsteigerung BHKW		
	mit Schukey System [%]		

Schukey System im BHKW

Auflistung der Wirkungsgradkette

- Gasturbine im BHKW
- Rankine-Cycle Dampfprozess
- Schukey Motor als
 Stromerzeuger zur
 Abwärmeverstromung

645	Kraftstoffleistung BHKW Gasturbine [kW]		
0.325	Mechanischer Wirkungsgrad Turbine [-]		
210	Mechanische Turbinenleistung [kW]		
61	Anteil in der Abgasenergie [%]		
0.9	Wirkungsgrad Verdampfereinheit [-]		
355.5	Dampfleistung [kW]		
260	Dampftemperatur[°C]		
0.135	Schukey Motor Wirkungsgrad einstufig [-]		
48.0	Mechanische Leistung Schukey Motor [kW]		
0.885	Wirkungsgrad Generator & Wechselrichter [-]		
41.9	Elektrische Leistung Schukey System [kW]		
31	Elektrischer Wirkungsgrad BHKW [%]		
200	Elektrische Leistung BHKW [kW]		
20.95	Leistungssteigerung BHKW		
	durch das Schukey System [%]		
6.5	Wirkungsgradsteigerung BHKW mit Schukey System [%]		

Schlussfolgerung

- Flexible Einsatzmöglichkeiten des Schukey Motors in Prozessen mit anfallender Abwärme oder bei solarer Wärmebereitstellung
- > Je nach Konzeption kann ein Schukey System für Strom-, Kälte- oder Wärmegewinnung für verschiedene Anforderungen ausgelegt werden.
- > Solare Produktion von Strom, Kälte und Wärme möglich.
- > Umgebungsluft als Kühlmedium, kein Bedarf an Kältemitteln.
- Deutliche Wirkungsgradsteigerung von ansonsten benachteiligten Prozessen, z.B. dem Gasturbinenprozess möglich.
- <u>Weitere Arbeit im Projektverlauf</u> → Eigenschaften des Schukey-Motors im Prüfstandsbetrieb und im realen Einsatz Können die theoretischen Eigenschaften umgesetzt werden?

Danke für Ihre Aufmerksamkeit!

Dieses Projekt wird mit Mitteln der Europäischen Union finanziert.

DI Hermann Edtmayer

4ward Energy Research GmbH Reininghausstraße 13A / EG / 17 8020 Graz

- t: +43 664 889 29 638
- e: hermann.edtmayer@4wardenergy.at

Evelyn Lang MSc.

4ward Energy Research GmbH Reininghausstraße 13A / EG / 17 8020 Graz

- t: +43 664 885 00 358
- e: evelyn.lang@4wardenergy.at

DI DI(FH) Martin Schloffer

4ward Energy Research GmbH Reininghausstraße 13A / EG / 17 8020 Graz

- t: +43 664 885 00 338
- e: martin.schloffer@4wardenergy.at

Schukey Motor als Micro-KWKK

Wirkungsgradkette:

Stromerzeuger im Gebäudeszenario

Flachkollektor vs. CPC

+ Parabolrinne als Überhitzer

Solarfläche: 20 m² + 3,5 m²

Durchschnittliche Solarstrahlung im Raum

München 2009-2013: 700 W/m²

Solarthermische Leistung:

Flachkollektor: 8,6 kW

CPC-Kollektor: 12 kW

Elektrische Leistung Schukey-System:

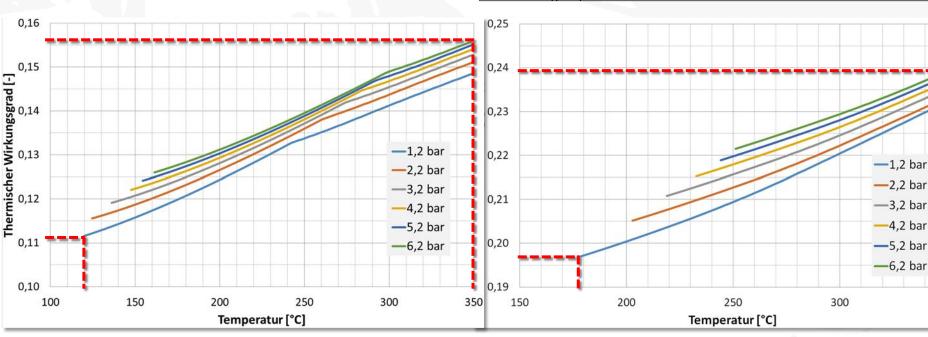
Flachkollektor: 1,4 kW

CPC-Kollektor: 2 kW

Flachkollekto + Überhitzer			
20	20	Solarfläche 1. Stufe [m²]	
3,5	3,5	Solarfläche 2. Stufe [m²]	
700	700	Horizontale Globalstrahlung [W/m²]	
30	30	Neigungswinkel der Kollektoren [°]	
808	808	Solarstrahlung auf die Absorber [W/m²]	
100	120	Austrittstemperatur 1. Stufe [°C]	
0,41	0,62	Wirkungsgrad 1. Stufe [-]	
331	501	Absorberleistung 1. Stufe [kW/m²]	
300	300	Austrittstemperatur 2. Stufe [°C]	
0,7	0,7	Wirkungsgrad 2. Stufe [-]	
566	566	Absorberleistung 2. Stufe [kW/m²]	
8,6	12,0	Gesamte solarthermische Leistung[kW]	
0,98	0,98	Wirkungsgrad Wärmetauscher[-]	
8,4	11,8	Dampfleistung [kW]	
0,22	0,22	Schukey-Motor Wirkungsgrad zweistufig[-]	
1,86	2,59	Mechanische Leistung Schukey - Motor[kW]	
0,8	0,8	Wirkungsgrad Generator [-]	
0,95	0,95	Wirkungsgrad Wechselrichter [-]	
1,4	2,0	Elektrische Leistung Schukey - System [kW]	

Schukey Motor als Micro-KWKK

Thermodynamische Simulation:


Modellierung in CemCAD

Einstufiger Betrieb: 11 bis 15,5 %

Zweistufiger Betrieb: 19,5 bis 24 %

Randbedingungen:

Dampfmassenstrom	100 kg/h
Dampfgehalt nach der Schukey-Maschine	min. 0,90
Expansionsverhältnis	$V_{aus} / V_{ein} = 6$
Isentroper Wirkungsgrad	0,88
Einstellung Expander	adiabat

350

Das Projekt Micro-Trigeneration

"Micro-TRIGENERATION: Ökonomische und ökologische Mikro-Kraft-Wärme-Kälte-Kopplung (KWKK) basierend auf der neuen Schukey-Technologie"

- 7. EU-Rahmenprogramm "Research for the benefit of SMEs"
- Start: 1.10.2013 Laufzeit: 30 Monate

Geplante Ergebnisse

- Einfacher, wirtschaftlicher und praxisgerechter System-Lösungsansatz für die Realisierung und Integration von Mikro-KWKK-Anlagen auf Basis der Schukey-Technologie.
- Entwickelte / adaptierte Komponenten und Steuerprogramme.
- Schnittstellenkonformität zwischen den eingesetzten Komponenten / Technologien und den übergeordneten Systemen.
- Erste Testanwendungserfahrungen inklusive Barrieren, Erfolgsfaktoren und Handlungsempfehlungen.